小波分析(维基百科)


ELMEC整理 2020年11月29日 18:22:59

小波分析(wavelet analysis)或小波转换(wavelet transform)是指用有限长或快速衰减的“母小波”(mother wavelet)的振荡波形来表示信号。该波形被缩放和平移以匹配输入的信号。

“小波”(wavelet)一词由吉恩·莫雷特和阿列克斯·格罗斯曼在1980年代早期提出。他们用的是法语词ondelette,意思就是“小波”。后来在英语里,“onde”被改为“wave”而成了wavelet。

小波变化的发展,承袭Gabor transform的局部化思想,并且克服了傅立叶和Gabor transform的部分缺陷,小波变换提供了一个可以调制的时频窗口,窗口的宽度(width)随着频率变化,频率增高时,时间窗口的宽度就会变窄,以提高清晰度.小波在整个时间范围内的幅度平均值为0,具有有限的持续时间和突变的频率与震幅,可以是不规则,或不对称的信号。

小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。

小波理论和几个其他课题相关。所有小波变换可以视为时域频域表示的形式,所以和调和分析相关。所有实际有用的“离散小波变换”使用包含有限脉冲响应滤波器的滤波器段(filter band)。构成CWT的小波受卡尔·屈普夫缪勒的屈普夫缪勒不确定性原理制约。

1. 历史

第一个小波转换是阿尔佛雷德·哈尔在 1909年提出来的哈尔小波(Haar wavelet),但是当时小波的概念并不存在,直到1981年地球物理学家吉恩·莫莱特才提出小波的概念,且小波转换变成分析地震波的新工具。

之后在1984年吉恩·莫莱特和 物理学家亚历克斯·格罗斯曼发明了"wavelet"一词,并且对于连续小波转换和其各种应用有比较详尽的数学研究。

在1985年之前,大家所熟知的正交小波(orthogonal wavelet)只有Haar小波,然而数学家伊夫·梅耶尔在1985年建立了第二种正交小波,即Meyer小波。接着越来越多人投入这个领域并在1987年法国办了第一届国际研讨会。

1988年, 史蒂芬·马拉特和伊夫·梅耶尔提出了多清晰度的概念,同年(1988),英格丽·多贝西建立了紧支撑正交小波(compact support orthogonal wavelet)。隔年(1989)史蒂芬·马拉特提出了快速小波转换。随着快速小波转换的发展,许多小波转换的应用得以实现。

除了先前许多卓越的数学家像是英格丽·多贝西,亚历克斯·格罗斯曼,史蒂芬·马拉特,伊夫·梅耶尔,罗纳德·德沃尔,罗纳德·科夫曼,维克多·魏克尔豪斯在小波理论上都有显著的贡献,之后直到现在也陆续有人提出了许多方法和应用。

1.1 时间线

2. 小波的定义

wavelet是指小型波(在傅立叶分析里的弦波是大型波),简单说来,小波(wavelet)是一个衰减迅速的振荡。有几种定义小波(或者小波族)的方法:

3. 小波的分类

  1. 第一种输入为: continuous,输出为: continuous 称为 Continuous Wavelet Transform
  2. 第二种输入为: continuous,输出为:discrete 称为 continuous wavelet transform with discrete coefficients
  3. 第三种输入为: discrete,输出为:discrete 称为 Discrete Wavelet Transform

4. 应用

离散小波变换(DWT) 通常被用于信号编码,比如在工程和计算机科学,而连续小波转换(CWT)通常被用于信号分析,即科学研究类。小波变换现在被大量不同的应用领域采纳,有时甚至会取代了傅里叶变换的位置,在许多领域都有这样的转变。例如很多物理学的领域亦经历了这个转变,包括分子动力学,从头计算(ab initio calculations),天文物理学,密度矩阵局部化,地球物理学,光学,湍流,和量子力学。其他经历了这种变化的学科有图像处理,血压,心率和心电图分析,DNA分析,蛋白质分析,气象学,通用信号处理,语言识别,计算机图形学,和多分形分析。

所有wavelet适用的运用中, 大致上有下列两项特点:

  1. 信号的频率分布,会随着不同的时间(或地点)有较大变异
  2. Multiscale 的分析扮演重要的角色

通常在做信号或影像处理的过程中,会面临到取样点的取舍:

  1. Larger sampling interval will ignore the detail
  2. smaller sampling interval will require a lot of data

而wavelet transforms comprise them.

4.1 影像分割

影像分割可以定义为,将影像分成若干个区域,而这些像素组成区域必须为各个类似的像素所连结而成.

影像的分割大略可以分为:

  1. 临界值法: 主要是靠设定临界值,来去区分物体与背景.
  2. 区域法: 将影像分为若干个子区域,这些子区域有相连性
  3. 边界法 借由求影像梯度大小,来找出正确影像边界的方法
  4. 边缘法 利用一阶导数的大小来侦测出边缘所在的位置,之后再使用一阶导数的方向将小的边缘连结成边界的方法.

借由小波转换的方法,将原始的影像,经过特定的小波转换的技巧后, EX: symlets wavelet, 滤除掉噪声,并且 对X轴方向做一次小波转换,对Y轴方向做一次小波转换,之后采用影像分割的方法,提高影像分割的精确度.

4.2 影像压缩

影像压缩的过程 原始的图形资料 -> 色彩模式的转换 -> DCT转换 -> 量化器 -> 编码器 -> 压缩完成

小波转换最常见的应用是用于影像压缩。和其他变换一样,小波变换可以用于原始影像(例如图像),然后将变换后的数据编码,得到有效的压缩。影像压缩通常可分为三大步骤,分别是转换(Transform)、量化(Quantization)和编码(Coding)[1]。其中转换这个步骤是将原始资料转换成另一种表示法,可经由逆转换得到原始信号。转换的目的在于除去信号取样的相关性,也就是去除取样间的累赘。在对影像资料转换时,通常是将影像先分割成不重叠小区块,再对小区块进行单位转换,而单位转换是一种可逆的转换,其演算的核心为正交的基底函数。信号可以分为规则性信号与非规则性信号两类,所谓规则性信号即是信号中所有组成物是同时发生的;而非规则性信号其组成物并非是同时发生。对于规则的信号,理想且有效的转换方式是傅立叶转换。而适用于非规则性信号的工具就是小波转换。较为知名的影像压缩档案格式JPEG 2000就是采用小波的图像标准,算法细节请参考小波压缩。

wavelet影像压缩未来的趋势为:

  1. 支援更多的色彩, EX: RGB
  2. 加强运算能力,使其能够支援更多影像格式
  3. 使用wavelet transform消除高频信号,加快运算
  4. 应用在视频处理上

4.3 边缘侦测

小波转换亦常应用于影像的边缘侦测(edge detection),传统的影像边缘侦测采用二维差分运算子以侦测影像边缘,乃假设影像边缘上和边缘旁之影像灰阶值必然不同,当取微时分,在边缘上会呈现非常大梯度值,借由调整影像灰阶值的临界值参数可强化边缘,但二维小波转换则是一种效果较佳的影像边缘侦测方法,当取小波转换时,在影像边缘上亦会呈现非常大的梯度值。在电脑视觉或影像处理上经常使用动态轮廓或蛇行模式来侦测物体的边界或边缘。

在物体纹路及表面瑕疵检测上亦有其应用,由于小波转换有局部性处理的能力,对于小区域之瑕疵能有效凸显,其频率特性使得在处理瑕疵上不易受环境影响。相对于频率域之转换方法,小波转换处理速度快,因不须事先经过训练与繁复的数学计算,使得小波转换在速度处理上获得不错效果,其具有多解析(Multi-resolution)与多尺度(Multi-scale)能力,使得在处理纹路瑕疵上不会产生方块效应。小波转换不会变动影像物体的相对位置,且保留纹路与瑕疵的空间关系与影像大小。

4.4 音乐信号分析

小波转换亦可用在音乐信号上,像是乐器自动辨识的应用,第一种为先使用一维小波转换将声音频号分解为不同频率范围的各个频带,接着再对各个频带中撷取能量平均值以及能量标准差视为一维小波转换之特征向量。而第二种方法为先将声音频号转成频谱图并视为一张二维影像,对此频谱图做二维小波转换分解出各个频带,再对频带中撷取能量平均值和能量标准差做为二维小波的特征向量。最后,利用相邻近似法使用欧基里德距离来计算测试资料的特征向量和每一乐器的特征向量之距离,并取最小距离为辨识结果的乐器类别[3]。

而小波转换也常用在音乐信号的压缩,由于人耳对声音各频带是有其感知力的,故有些频带人无法听见,有些频带人耳特别灵敏。利用离散小波转换来将音乐信号做高低频切割多次,就可以将原信号分成许多子频带(sub-band),但传统离散小波转换计算架构,将波型分成高频与低频后,下一次的切割只对低频做切割,故没办法完全分割出与人耳感知频带相符合的子频带。于是更精细的计算架构被提出,称为离散小波包转换(discrete wavelet packet transform),原理就是音乐信号被分成高频信号后,会再做分割。一段音乐信号就可以被分割成更贴近人耳25个频带的信号,这样的分割法更优于一般傅立叶分析所使用的滤波器,从这些子频带中,找出能够被屏蔽的信号,滤除之后,就可以将原本音乐信号档案大小压缩了。

在辨识音乐信号的乐谱上也有其应用,音乐信号由一个个音符组成,而每个音符以特定的节奏出现,通常是成群的谐音出现,若要分辨出一段信号最主要的频率为何,必须滤除其泛音才能判断,而由离散小波转换的多重清晰度分割就可以将泛音区隔在不同的子频带中,而且信号中的噪声也可以依同样方法被滤除。由于是要侦测transient 现象,基于要侦测什么样的信号就使用跟它很像的信号当作基底拆解它这个原则,故在选择小波基底时,就要选择较有突然剧烈变化的母小波,如此一来小波转换后的小波系数,能量就会聚集在原信号有剧烈变化之处了[4],由此方法可有效辨识音乐信号的音高(也就是频率)。

音乐信号简易压缩 原始音乐信号 -> MDCT ->去除不重要的系数 -> IMDCT -> 输出结果 MDCT: Modified Discrete Cosine Transform

4.5 遥测影像分析

连续小波转换常应用于遥测影像分析上,如海底地形之解析[5],利用具有分析非均匀信号的高维连续小波转换理论作为遥测影像的分析工具,从中求取影像波浪谱,再从影像波浪谱中反算出观测区域的水深值。传统的研究多将海洋遥测影像假设为均匀(homogeneous)的海面影像,并采用被分析影像为均匀性前提所发展出的方法进行谱转换,其分析所得之影像谱实际上为整个遥测影像波数谱的平均值。然而自然界的信号常存在有非均匀的特性,近岸海域的波浪亦不例外。为能从分析非均匀影像信号中分析得到合理且准确的水深信息,可引入非均匀信号分析理论-小波转换。如高维小波转换理论可应用在分析海洋遥测影像之研究,藉以从中计算出底床地形的信息,透过小波转换的非定常信号的解析能力,可将整张遥测影像分解为不同的子影像,每一块子影像区域的波场理论上具有一定程度之均匀性,再进而从各子影像中求解水深值,藉以描绘出观测海域的水深信息。

4.6 生物医学信号分析

离散小波转换亦常应用在生医领域中,因为其具有较低的复杂度与较佳的时域-频域分析之特性,而被选择作为分析生医信号的方法。心电图 (Electrocardiography) 与脑波图 (Electroencephalography) 是两项常见的生医应用。在心电图方面,为了诊断心脏相关疾病,可使用离散小波转换去除原始信号中冗余的特征,并由重建的信号中侦测R-R区间。

一般而言,病患之心电图时常需要全天候的观察与分析,因此资料量相当庞大,此时便需要很大的储存空间来储存这些资料,因此有必要将心电图之资料加以压缩,才可有效减少所需之储存设备成本。信号的压缩可分为无失真(lossless)压缩和失真(lossy)压缩两种,若是依传统医学观念,或许应该使用无失真压缩,才可避免因信息不完整而造成误诊等医疗疏失,但由于传送信息之网络带宽有限且资料庞大,因此使用失真(lossy)压缩以达到更大的压缩效率已成必然,在增大压缩效率的同时,亦可保证其重建信号之可靠度,以避免不必要的医疗疏失便是一重要课题,小波转换便可达到此项目标。

而小波转换亦有去除不必要噪声之功用,以正确判读心电图,此方法称为小波系数临界法(wavelet coefficients thresholding),信号经小波转换后,噪声会成为较小的信号(low scale),因此将较小scale的信号去除,即可去除噪声,一般的做法为设立一临界值,将低于此临界值的信号舍弃,高于临界值的信号保留。而选择临界值的方式有两种,一种为硬式临界值(hard threshold),其临界值为一常数,不随输入信号改变而改变,此法优点为设计简单,但得到的结果并不理想,若改由不同输入信号形成不同临界值,则称为软式临界值,将经小波转换后每一频带之变异数(variance)开根号后形成标准差,而后以标准差当作参数作为临界值,此法产生之临界值会因输入信号长度的不同而改变[6]。

另一个小波转换在生医领域的应用则是应用在脑电图上,早期脑电图信号分析技术,普遍以傅里叶转换为主,近年来,小波转换技术逐渐被采用,其特性在对于未知信号的频率分布,在时间轴上可以得到很好的清晰度,适合应用于脑波的不稳定信号分析处理。再配合类神经网络非线性分辨能力,可有效分辨α波、β波。

亦有一个应用是在于脑电图中正常的背景信号与不正常的尖峰信号之区分,患有癫痫的病人其不正常的尖峰信号其形状会类似一个凸起的尖峰,故此信号壳称为尖峰信号(spike),利用多重解析变换的小波转换(multi-resolution wavelet transform)可用来分析这类型态类似、但大小区间变异很大的癫痫信号。


爱立迈科(宁波)计测仪器有限公司 浙江省宁波市中山东路369号中山首府B-708 URL: www.elmec-gms.com.cn TEL: 0086-0574-8733-7211 Mail: nb_branch@elmec-gms.com.cn